Close

Product Enquiry: For Any Other Assistance :

Archive for: Image

Indian scientists have discovered an ant species that kidnaps others, behavior seen for the first time in the tropics

Indian scientists have discovered an ant species that kidnaps others, behavior seen for the first time in the tropics

A marauding gang of thieves is on the prowl. They find a house whose residents are in the middle of moving to another house. While the residents busy themselves attending to the chores necessary for the shift, one of the thieves moves in slyly and kidnaps the baby inside.

We are not talking about humans—these are ants.

Moving buddies
An Indian scientist has discovered this trait of kidnapping for the first time in a tropical ant species—one found in India, Sri Lanka and Japan.
Eight years ago, when Sumana Annagiri, an ecologist, relocated from the US to Kolkata, she found that she had company. A colony of ants was also moving in.
She began to observe their behaviour and what she found was fascinating. She says, “A single ant invited its nest mate and brought it along, travelling together as a tandem pair in physical contact with each other.”
It goes back and forth bringing its nest mates with it. A few other ants (about 15% of nest members) act similarly, taking up the job of leading the nest mates and in this manner, the entire colony of ants relocate to their new residence.

This mannerism, known as “tandem running”, was different from the usual manner in which ants normally relocate, which is following a chemical trail left by a member.
Captivated by this behaviour, Annagiri took up the study of this ant species Diacamma indicum, belonging to a primitive family of ants, Ponerinae, and set up the ant lab to study ant behaviour at the Indian Institute for Science Education and Research in Kolkata.
Like all ant species, these ants are eusocial, defined by three main features. One, there is an overlap of generations—a minimum of two generations is required. Two, cooperative care: The brood of the nest are pooled together and taken care of. Three, division of reproductive labour: Only one or a few members get to reproduce and lay eggs, while the rest are sterile and take care of the queen’s offspring.

In most eusocial ants, the queen is distinct from the rest of the workers due to the presence of wings and/or greater size. However, in this particular species, all the members look alike—there is no distinct queen.
All female ants are born with a thoracic gland in place of the wings. A single female worker mates and reproduces, who is known as the gamergate or the queen.
Annagiri explains, “The current ruling gamergate retains its position as the only reproductive member, by mutilating the thoracic gland of all newly born female members.” This forces them to become workers—the gamergate usually mates with a male of another colony.
These are monodomous ants—living in a single nest, as compared to some species where a single colony occupies multiple nests. The nest size is not large, members range from 12 to 261 adults.

A second surprise
It was during the course of the study, published in Nature last October, that Annagiri and her team, Bishwarup Paul and Manabi Paul, discovered another fascinating trait of these—stealing the young ones of neighbouring colonies and using these young ones as slaves for their own colony.
Usually, one ant first identifies a neighbouring colony that’s in the process of relocating. Then, one or several ants enter and raid the colony and kidnap their pupa. The ants prefer stealing pupae as opposed to the immature eggs or larvae, possibly because pupae are the last development stage, ready to grow into an adult.
The purpose of the kidnapping being that the pupae, when they become adults, can be incorporated as workers into their colony. The females are expected to be mutilated as the stolen pupae are treated in the same way as the host pupae, but this has not been tested.

Raiding other nests for young ones, food or other resources is common in the animal kingdom. The young ones, or brood of a species, are particularly vulnerable. They are often targeted to be used as food reserves of a colony.
Aggressive ant species such as army ants are especially noted for their raiding behaviour, where they form specialized columns or swarm and hunt for food, which includes the brood of other ants.
But thieving for the sake of enslaving is found only in ants. Although rare, thievery of brood for the purpose of slave-making has been known in certain ant families found in temperate regions of the world.
Of the 12,000 known ant species, about 50 species are known to be slave makers. Slave makers and their victims are usually genetically related. They could be of the same species or a related species.
In many of these species, slavery, or “dulosis”, as it is scientifically known, is obligatory. That is, these ants rely solely on workers captured in raids for colony building. All work of maintaining the nest is performed by slaves; if there are none left, the colony dies.

However, there are a few species where adults are capable of conducting all the tasks of the colony and occasionally conduct raids to increase the workforce of the colony.
Diacamma indicum seem to fall in the latter category. But their raiding pattern is different from any other species discovered so far, based on knowledge from published scientific literature. Slave-making ants typically conduct systematic raids in large groups. Diacamma indicum conducts the thefts individually, with only 1% of the colony taking up thievery.
Annagiri says, “The theft is more opportunistic in nature. When an ant goes out foraging for food such as termites and dead insects, and comes across a colony of its own species relocating, it takes the opportunity to steal the brood.”

Usually, when a colony relocates, the ants take temporary shelter in anywhere from one to eight temporary nest sites, before moving into the final nest site. They move their young, eggs and pupae along with other stored resources. Although the colony is not unguarded, they are vulnerable to predation.
Annagiri and her team observed the stealing behaviour of the ants both in their natural habitat, where they nest in cavities of stones, rocks, tree branches, trunks, fallen logs and cracks of walls, as well as in the lab.
They introduced a foreign colony inside a lab area where a colony of Diacamma indicum was already residing, to simulate relocation. Annagiri’s team recorded the brood thefts that took place. They observed that both the resident and foreign colonies attempted to steal brood from each other. The resident colonies, however, made significantly more attempts and were more successful at stealing.

But the victim colonies fought back frequently. If the thief was recognized, the colony would attack by biting, dragging, pushing down or antennal boxing. In this way, they were able to block more than half the attempts.
The team also studied the fate of the stolen pupae—if they are consumed as food like some ant species do. Using different paints to mark the foreign and resident pupae, they found that almost all stolen pupae were integrated into the colony, just like their own pupa. The stolen pupae were allowed to eclose (emerge as an adult from the pupa) and assimilated into the workforce of the colony.
Slave-making ants first find mention in Charles Darwin’s Origin of Species, in which he speculated that slavery in ants probably evolved as a by-product of brood predation. In temperate regions, history of slave-making ants has been known to exist for tens of thousands of years.

Until now though, there has been no record of slave-making in the tropics, so it’s hard to guess how long slavery here has existed. Annagiri hopes that more slave-making ants among tropical species will be discovered, which will help to understand the history and evolution of slavery in ants.
For now, she and her team plan to further study this thieving behaviour. “We are exploring the mechanism of stealing, how the behaviour is modulated. Do the ants even know if they are stealing?”
Deepa Padmanaban is a freelance science journalist, whose work has appeared in National Geographic, NYmag, BBC Earth and The Atlantic, among others.

Source: Live Mint

PCI Pest Control Private Limited ranks Number 4 on Feedspot Blog Reader’s list of the Top100 Pest Control Blogs on the planet!

PCI Pest Control Private Limited ranks Number 4 on Feedspot Blog Reader’s list of the Top100 Pest Control Blogs on the planet!

Pest-Control-Blogs

BreakingNews: PCI Pest Control Private Limited ranks Number 4 on Feedspot Blog Reader’s list of the

Top100 Pest Control Blogs on the planet!

The Best Pest Control blogs from thousands of top Pest Control blogs in our index using search and social metrics. Data is refreshed once a week.

These blogs are ranked based on following criteria

Google reputation and Google search ranking
Influence and popularity on Facebook, twitter and other social media sites
Quality and consistency of posts.
Feedspot’s editorial team and expert review

CLICK HERE TO KNOW MORE

India unprepared for dengue, Chikungunya finds analysis.

India unprepared for dengue, Chikungunya finds analysis.

India and other countries in South Asia are unprepared to address emerging vector-borne viral infections such as dengue and chikungunya, an analysis released by Centre for Disease Dynamics, Economics & Policy (CDDEP) on Wednesday revealed.

After examining vulnerability to emerging and growing infectious disease threats and the capacity to respond to outbreaks, the analysis finds the level of preparedness is inadequate to protect public health across the region.

The main burden of vector-borne viral infections in the South Asia region are dengue and chikungunya, while zika virus is also likely to emerge. Of the 390 million dengue infections that are estimated to occur annually worldwide, over 70 per cent occur in South Asia, the analysis noted. The report cites that in India, almost 95 per cent of adults by the age 40 have been infected with dengue virus, while 41 per cent have been infected with chikungunya.

At the heels of the report, JP Nadda, Union Minister for Health and Family Welfare, held a high level meeting to review the preparedness of the Ministry and central government hospitals for prevention and control of dengue and chikungunya in the country.

South Asia’s battles against viral diseases
Countries in South Asia region — Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka, is home to a significant proportion of the global burden of infectious disease. Of the 390 million dengue infections that occur annually worldwide, over 70 per cent occur in South Asia

Longstanding battles
Tuberculosis, HIV, malaria, dengue, chikungunya

Emerging infectious diseases
Zika, ebola, MERS-CoV, avian influenza, neuroleptospirosis and leptospirosis, anthrax.

Source:DNA

Insects that help feed the world

Insects that help feed the world

The Cream Striped Owl moth is usually a sub-tropical and bushveld baby, with a range that extends up to equatorial Africa, according to my insect book, Field Guide to Insects of South Africa (Picker, Griffiths, Weaving, Struik 2002). They do seem to have been creeping slowly into Highveld areas for some time – I took the picture below of a slightly tattered individual in Cullinan in 2010.

There was one fluttering in my bathroom last night, a large member of a vast dancing throng of wings, ranging from almost translucent cream to rich sepia. I’ve never understood why people find moths scary; I know some superstitions hold that moths are signs of death (if that were the case, few families would survive an ordinary summer evening!) but to me, they’re signs of life. When not distracted by our lights, they do important nightshift work.

Many moth species are crucial pollinators, drawn by the night’s rich, sweet fragrances and nectars to flowering plants like Struthiola ciliate, a fynbos shrub, picking up pollen to transfer to the next plant they visit.

Despite the rightful focus on honeybees-as-pollinators, all sorts of wild animals are vital to both agriculture and wild plants. Flies are perhaps second to bees in the pollination stakes, visiting apple trees, cashews, onions and coriander, to give a tiny sample.

Wasps are important pollinators too (avos are among their beneficiaries), as are beetles and bumblebees (apparently they love canola).

Other nightshift pollinators are also often maligned. Bats trigger grils down the spine for many, but the fruit bat, with its appealing dog-like face, is the major pollinator of the baobab, for example. Mice also attract the ‘eeurrgh’ reaction, yet in recent years, scientists have discovered that some Protea species are pollinated by scurrying little rodents out at night.

If you like chocolate, you can thank those most-cursed creatures, the midges (what we call muggies), daytime workers spreading pollen from one cacao flower to another in cocoa plantations, according to Adrienne Mason in Planet Ark: Preserving Earth’s Biodiversity.

One in every three bites of food made possible by pollinators.

The staple crops of the world (wheat, maize, rice and other grasses) are wind-pollinated, but many of our other food crops are dependent on living creatures, from ants to birds, to reproduce. “87 out of 115 leading global food crops are dependent on animal pollination. One in three bites of food you take was made possible by the work of pollinators,” Mason writes.

While South Africa does not use ‘managed pollinators’ (beehives trucked between agricultural regions) nearly as intensively as the USA and Europe, 87% of the beehives in the Western Cape, where half the deciduous fruit in the country is grown, are ‘managed pollinators’ of fruit trees (the fruit industry was valued at R9 800m in 2014).

In 2008, Mike Allsopp and colleagues did a valuation of pollination services and arrived at these figures: “The contribution of managed honeybee pollination is found to be between US$28.0–122.8 million […]; the contribution of wild pollinators is found to be between US$49.1–310.9 million…” That’s a lot of money. And if insects and other animal pollinators died out, of course, the replacement cost would be much higher – we’d probably have to invest in those little robot pollinators!

No fear of that quite yet: Wits zoology and entomology Professor Marcus Byrne (famous for discovering that dung beetles use the Milky Way to navigate) is in the bush as I write. Following late but good rains, he notes that all is lush and green and singing with insect life, evidence of “the resilience of our fauna to not only what we do, in continually removing or degrading their habitat, but also their ability to bounce back from a serious drought”.

However, I would suggest that we do not test that ability to destruction. Even if you don’t give a damn about the aesthetics of nature, or the intrinsic worth of the lives around us, these ecosystems clearly have a raw commercial value and are crucial to our food security.

Hence “the importance of maintaining natural and other forage areas for the conservation of insect pollinators,” as Allsopp et al write, instead of creating bleak and rebarbative deserts, and using pesticides to kill all known insects dead.

For example, in our pesticide-free garden, leaves are piled onto beds as mulch, and dead branches are left to quietly decompose, providing micro-habitat that supports insects, bats and birds – evidenced by the quiet humming of life here compared to more manicured and pesticided environment like the townhouse complex down the road. The same difference can be seen on a walk from ploughed and disked farmland to adjacent veld.

The need for havens that support and protect biodiversity, specifically pollinators and pest controllers, should be as much part of land use management policies as water use is.

Rejoice in the fluttering moth-wings at night; manage birds, bats and rodents in your office parks, housing developments and municipal buildings without sprays and poisons; campaign against development of every last wild haven in your vicinity. We need them more than they need us.

Author: Mandi Smallhorne
Source: News24

Setting a Baseline: A Clearer View of Mosquito Resistance to Insecticides

Setting a Baseline: A Clearer View of Mosquito Resistance to Insecticides

Mosquito control professionals have made significant gains toward managing malaria worldwide, as well as defending against West Nile virus, chikungunya, dengue, St. Louis encephalitis, and, more recently, Zika. However, mosquito resistance to existing insecticides also has been making gains. According to the World Health Organization, 60 countries have reported some mosquito resistance to at least one class of insecticide.

One challenge to managing mosquito resistance has been a lack of reliable information on the nature of resistance, including a dearth of baseline information on which mosquitoes survive which insecticides. A few studies have evaluated a few populations of mosquitoes for a few active ingredients, but no such studies examine several populations for several active ingredients from several different regions. A team of researchers, led by Stephanie Richards at East Carolina University, looked to change that, conducting the first large-scale baseline study in the United States on mosquito resistance, and they found degrees of resistance among two major mosquito genera to six common insecticide active ingredients.

Their study, published today in the Journal of Medical Entomology, showed that mosquitoes of the Aedes genus were less likely to show resistance than those in genus Culex, but both genera showed varying resistance to active ingredients.

Using WHO criteria to classify susceptibility (something that only a few states or even countries do) as “susceptible” (98-100 percent mortality), “possibly resistant” (80-97 percent mortality) and “resistant” (less than 80 percent mortality), the researchers found mosquito resistance to these common active ingredients:

    Malathion: All Culex mosquito populations that were tested were resistant (4-64 percent mortality), while only Aedes triseriatus from Minnesota showed no resistance.
    Etofenprox: All Culex were resistant, while three Aedes albopictus populations were susceptible, and 10 other species showed at least possible resistance.
    Bifenthrin: All Culex were resistant, as were nine Aedes populations, while four Aedes and four Culex populations showed possible resistance.
    Permethrin: Nine Aedes populations were susceptible, while the remaining four Aedes showed possible resistance. No Culex populations were susceptible.
    Phenothrin: Twelve Aedes populations were susceptible, and one showed possible resistance, while no Culex were susceptible.
    Deltamethrin: Eleven Aedes and five Culex populations were susceptible, while three Culex populations showed possible resistance and six showed resistance.

One Aedes population (A. albopictus) from Florida was resistant.

Overall, Culex mosquitoes were 15 times more likely to show resistance than Aedes. Differences in resistance were more significant between genera than between regions where the mosquitoes lived. This was not a surprising finding itself, said Richards, because Culex mosquitoes are more active from dusk until dawn, while Aedes are more active during the day and thus were exposed to very different insecticide pressures due to exposure to sub-lethal doses of pesticides. “We did see that pyrethroid resistance is increasing due to increased usage, and it was interesting to observe the differences between the active ingredients.”

Large scale, baseline-setting studies like this one are key to understanding the dynamics and causes of mosquito resistance to pesticides. The U.S. Centers for Disease Control and Prevention is now encouraging pesticide control managers to evaluate resistance, including the issuance of guidance documents with protocols and bottle bioassay procedures. From these studies, local agencies can more easily analyze resistance and design more effective abatement programs.

“Only insecticides that are effective at killing mosquitoes should be used,” Richards said in an email. “Efficacy must be evaluated on a regular basis. These insecticides should only be used in a targeted surveillance-based manner, against potentially dangerous mosquitoes. Unfortunately, most spraying is used as a routine, reactive control,” which increases the risk of using pesticides that mosquitoes have evolved to resist.

Author : Andrew Porterfield
Source : Entomology Today

Rentokil becomes the leading pest control company in India

Rentokil becomes the leading pest control company in India

Rentokil Initial plc (FTSE: RTO, “the Company”) today announces that it has entered into an agreement to form a joint venture with PCI Pest Control Pvt. Ltd. (“PCI”) and to acquire a 57% stake in the new joint venture, for an undisclosed sum. As part of the transaction, the Company will merge its Indian business into the joint venture. The combined business will be the largest provider of pest control services and products in India.

The Company will have management control of the joint venture, which will have combined annual revenues of 4.5Bn rupees (c. £50m), operate from c.250 locations and employ c.6,900 people. In the 12 months to 31 March 2016, PCI delivered revenues of 3.7Bn rupees (c. £41m).

Today’s agreement is in line with the Company’s strategy of accelerating growth in its pest control business and pursuing M&A opportunities in Growth and Emerging markets.

PCI, a privately owned company, provides a national presence in the Indian market – operating in 47 cities. Headquartered in Mumbai in Western India, it also has significant scale in North and East India. Mumbai is India’s commercial centre with one of the highest GDPs in the country and ranks as one of the world’s most populous cities (the metropolitan population is in excess of 20m). Rentokil has a strong presence in Southern India where there will be significant density benefits by combining the businesses.

Key growth drivers of pest control services in India:

High GDP growth: The United Nations World Economic Situation and Prospects 2017 report (January 2017) projects growth in India of 7.7% in fiscal year 2017 and 7.6% in 2018.
Population growth: India will become the most populous country in the world by 2028 with about 1.45Bn inhabitants (source: UN).
Rapid urbanisation: By 2030 the number of Indian cities with more than 1m people will be 68, currently 42 (source: McKinsey)
Expansion of middle classes: By 2030, urban middle class households in India will reach 91m and 590m people will live in cities, nearly twice the total USA population (source: McKinsey).
Increasing hygiene standards – safer foods and medicines: India was ranked 12th in the world for the export of food and food products in 2015, and produced 20% of global exports in generic medicines (source: IBEF).
Government initiatives – Including the drive for higher standards of hygiene and its investment in the food and pharmaceutical sectors.

Rentokil Initial estimates that the professional pest control services market in India is worth c. £200m p.a. and growing at c. 15% p.a. No figures are available for the size of the products or semi-professional markets.

As part of the transaction, which is expected to complete in March, the existing PCI business’ manufacturing facilities are being retained by the sellers and the Company has entered into an exclusive agreement to market their key pest control products in India and export them to other Emerging markets. The agreement also provides the opportunity to jointly develop new innovative products.

In 2016, Rentokil Initial’s Asia region had ongoing revenues of £118.9m (+12% year on year) and operating profits of £12.4m (+31.1% year on year). The joint venture therefore provides the Region with an exciting and significant opportunity to accelerate its revenue and profit growth. In India, revenues grew by 23.4% in 2016 alone.

Andy Ransom, Chief Executive of Rentokil Initial, commented:

“PCI is an outstanding business and by combining its national scale in India with our global expertise, we will create a market leader that is strongly positioned to take advantage of the increasing demand for commercial and residential pest control services over the coming years. Both companies operate similar business models with a strong commitment to colleagues and delivering great customer service.

“The growth potential in India is enormous. Economic activity, urbanisation, population growth and increasing urban middle classes are some of the key drivers of growth for pest control services, and we see these trends very clearly in India.”

Mr Anil Rao, Chief Executive of PCI, said:

“The joint venture is the most strategic combination of the acknowledged managerial and technical skills represented by Rentokil Initial and PCI’s premier position, broad-spectrum customer base and vast experience operating on the Indian subcontinent. It is perfectly suited and timed to capitalise on the surging demand for high quality, world-class pest management services.

“PCI is the only company in this service industry with in-house manufacturing capabilities and the unique ability to create sustainable products, better suited to a business driven increasingly by a global search for ecologically sensible solutions. This would certainly provide a great opportunity to accelerate growth and performance in India and across the region.”

International Trade Secretary, Liam Fox, said:

“This move is yet another example of the strong economic and commercial partnership between the UK and India which drives economic development and growth, leading to shared prosperity.

“India is a fast-growing market with real trade and investment potential for UK businesses and Rentokil Initial is a great example of a business taking advantage of the opportunities to put in place ambitious expansion plans.”

Source : Rentokil Initial

Ant choosiness reveals they all have different personalities

Ant choosiness reveals they all have different personalities

The power to imagine a better world has helped transform human societies, and it may be doing the same to ant societies.

Individual ants have differences in behaviour – something almost akin to a personality – that affect colony decisions. And some ants are so different in their personal preferences that they may act as the imagination of the colony, driving it on to a better future.

Rock ants (Temnothorax albipennis), found in coastal areas of the UK, make their homes in crevices. If a nest is wrecked, or if scouts find better digs, it often makes sense to relocate.

But not just any crevice will do. When looking for a new home, ants have a high-maintenance list of requirements, says Thomas O’Shea-Wheller at the Ant Lab of the University of Bristol, UK. They seek low light levels, an entrance gap of 1 to 1.5 millimetres, a ceiling height of roughly 2 millimetres and an internal area of about 20 square centimetres. To test how individuals’ opinions of potential nests affect a group decision to relocate, O’Shea-Wheller’s team showed artificial nests that were excellent, good or poor to 160 individual ants from 10 colonies.

In general, the better the nest, the more time the ants spent in it laying down pheromones. These pheromones make other ants more likely to join them.

But the team found a lot of variability between the amount of time individuals spent in a nest of a certain quality. “Some ants are picky, others are more liberal and will accept almost anything,” says O’Shea-Wheller. “Much like humans, not everyone wants to live in a mansion.”

And some ants never seem happy, however nice a nest is. They live there, but seem restless, and are more likely to scout. It means they are always searching for new things. “They are the imagination of the colony,” says O’Shea-Wheller.

“The ability of the colony to find new nest sites depends on there being some wanting to search,” says Anna Dornhaus at the University of Arizona in Tucson. “It’s useful to the colony to have some ants that are fussy.”

The team modelled this behaviour and found that if the colony was choosing between two poor nests, the ants with more extreme behaviour – in this case the ones that would settle for almost anything – helped make the collective decision-making process faster and more flexible (Proceedings of the Royal Society B, DOI: 10.1098/rspb.2016.2237).

“This adds to the evidence that individuality is important,” says Nathalie Stroeymeyt at the University of Lausanne in Switzerland.

However, we still don’t know what’s behind this individuality. “We’d like to know what drives personality differences, what the evolutionary benefits are,” says Dornhaus. “At least this gives us a suggestion about why personality differences could be useful – and could benefit a colony.”

Source: News Scientist

India begins outdoor caged trials of genetically modified mosquitoes

India begins outdoor caged trials of genetically modified mosquitoes

India launched a project aimed at suppressing the local Aedes aegypti mosquito population by introducing genetically modified mosquitoes, according to two companies involved in the plan.

A similar project was approved last year in Florida on the heels of the Zika virus outbreak, which has been driven primarily by A. aegypti mosquitoes. Both projects involve so-called self-limiting male mosquitoes — brand name Friendly (Oxitec) — that are genetically modified to produce offspring that do not survive to maturity.

Five open field trials of the mosquitoes in Brazil, Panama and the Cayman Islands each led to a more than 90% reduction of the wild A. aegypti populations, according to a news release from the British company Oxitec and Gangabishan Bhikulal Investment and Trading Limited (GBIT), an Indian company. Open field trials are also planned for India, pending regulatory approval, the companies said.

For now, the India project was launched on Jan. 23 with outdoor caged trials in Dawalwadi. In these trials, the genetically modified mosquitoes are released into cages to mate with wild-type A. aegypti mosquitoes, Matthew Warren, spokesman for Oxitec, explained to Infectious Disease News. The results are then compared with cages where the mosquitoes were not released, Warren said.

In November, officials in Florida authorized a plan to use Oxitec’s modified mosquitoes in a field trial in Monroe County. The decision by the Florida Keys Mosquito Control District (FKMCD) came after residents, apparently reluctant about the method at first, voted to approve the idea.

An earlier survey showed that residents did not support the use of genetically modified mosquitoes as insect control, but the survey was conducted before the Zika outbreak became headline news and prior to an FDA report that said the mosquitoes would have no significant impact on human health, animal health or the environment.

Oxitec is currently deploying the mosquitoes in the Cayman Islands and Piracicaba, Brazil, but Warren said the trial in the Florida Keys is not yet underway.

“We are working with the FKMCD to identify a new site for the trial, and are gathering and submitting additional information to the FDA,” Warren said. “At this stage I don’t have a timeline, but we’re working to ensure that it is held in the most rigorous way possible and launched as promptly as the regulatory process will allow.”

While India is not among the 76 countries that have reported evidence of mosquito-borne Zika virus transmission since 2007, WHO has said that any country with a population of Aedes mosquitoes is at risk for transmission.

The primary aim of the project in India seems to be decreasing cases of dengue and chikungunya, which also can be spread by A. aegypti mosquitoes. According to estimates published in 2014, dengue infects an average of 5.8 million people each year in India at a cost of more than $1.1 billion. The country also has seen outbreaks of chikungunya, including some last year, according to the news release.

“Increasing cases of dengue and chikungunya have been reported in recent years,” Shirish Barwale, member of the board of directors at GBIT, said in the release. “Presently available methods have not been effective against these public health hazards. We are very optimistic that this pioneering technology from Oxitec will help us to control the mosquito responsible for spreading these diseases.” – by Gerard Gallagher

Source: Healio

What a mosquito’s immune system can tell us about fighting malaria

What a mosquito’s immune system can tell us about fighting malaria

Immune cells in a malaria-transmitting mosquito sense the invading parasites and deploy an army of tiny messengers in response. These couriers help turn on a mosquito’s defenses, killing off the parasites, a new study suggests.

This more detailed understanding of the mosquito immune system, published January 20 in Science Immunology, might help scientists design new ways to combat malaria, which infects more than 200 million people per year.

“If we understand how the mosquito reduces the parasite to begin with, we hope we can boost these mechanisms to completely eliminate these parasites [in mosquitoes],” says Kristin Michel, an insect immunologist at Kansas State University in Manhattan who wasn’t part of the study.

Different parasites in the Plasmodium genus cause malaria. The disease is spread by certain Anopheles mosquitoes. These mosquitoes have natural defenses against Plasmodium that keep them from being overrun with the parasites when feeding on an infected person’s blood. But malaria transmission still occurs, because some Plasmodium species are particularly skilled at evading mosquito immune systems.

Previous research has shown that hemocytes, the insect equivalent of white blood cells, help mosquitoes fight off pathogens. Carolina Barillas-Mury and her colleagues at the National Institute of Allergy and Infectious Diseases in Rockville, Md., injected Anopheles gambiae mosquitoes — a primary spreader of malaria in sub-Saharan Africa — with a dye that stained their hemocytes. Those mosquitoes snacked on mice infected with a rodent version of malaria. Then the scientists watched the dyed hemocytes’ response.
Parasite’s problem

Sensing the presence of a malaria-causing parasite, mosquito immune cells (teal) kill themselves and release microvesicles (red) that activate cellular machinery that fights off the parasites, a new study finds.

Hemocytes that detected certain chemical fingerprints left by the parasites began to self-destruct. These dying hemocytes released plumes of tiny vesicles that then activated the mosquito’s defenses against the parasite, the researchers found. The vesicles triggered a protein called TEP1 to take down the parasite. Scientists already knew that TEP1 is an important part of mosquitoes’ immune response against Plasmodium parasites, but it wasn’t clear how the protein was called into action. Without the vesicles, TEP1 didn’t target the parasites.

Barillas-Mury and colleagues don’t know exactly what the microvesicles contain. But she suspects they carry messenger molecules that jump-start TEP1 and other proteins involved in this immune response.

This type of response “is a very powerful defense system because it can make holes in the parasite and kill it,” says Barillas-Mury. “You want it to be active, but in the right place and at the right time.” Plasmodium parasites set up shop in different places in the mosquito gut depending on their life stage. Microvesicles, much smaller than the hemocytes, can more easily move through different gut compartments to trigger a localized immune response right where the parasite is.

The researchers eventually hope to use their understanding of the mosquito immune response to develop new ways to stop malaria. They’re interested in creating a vaccine that prevents mosquitoes that bite an infected person from passing along the parasite. Such a vaccine could be used in combination with others under development that would prevent people infected with the parasite from becoming sick, Barillas-Mury says.

Source: Sciencenews.org

Scientists create mosquitoes resistant to dengue virus

Scientists create mosquitoes resistant to dengue virus

Mosquitoes get infected when they feed on someone who has the disease. Then they pass dengue to healthy people by biting them.

Each year, dengue sickens about 96 million people worldwide. The virus kills more than 20,000 people, mostly children, the researchers said.

“If you can replace a natural population of dengue-transmitting mosquitoes with genetically modified ones that are resistant to virus, you can stop disease transmission. This is a first step toward that goal,” said study leader George Dimopoulos, a professor of molecular microbiology and immunology at Hopkins.

The genetic modifications significantly increased the mosquitoes’ resistance to dengue. But the changes didn’t boost the mosquitoes’ defenses against Zika or chikungunya viruses.

“This finding, although disappointing, teaches us something about the mosquito’s immune system and how it deals with different viruses. It will guide us on how to make mosquitoes resistant to multiple types of viruses,” Dimopoulos said in a Hopkins news release.

He and his team said more research and testing is needed before these dengue-resistant mosquitoes are introduced into the wild, a process they said could take a decade or more.

Forty percent of the world’s population live in areas where they are at risk for dengue infection, the study authors said. The virus is most common in Southeast Asia and the western Pacific islands. But dengue infections have been increasing in Latin America and the Caribbean.

The research was published Jan. 12 in the journal PLOS Neglected Tropical Diseases.

Source: UPI

Name*

Email ID*

Contact Number*

City*

Is this enquiry for your home or business?*

Reason for contacting*

Message

Enter The Verification Code*

For Service Related Queries, Please Fill the Form

Name*

Email ID*

Contact Number*

City*

Is this enquiry for your home or business?*

Reason for contacting*

Message

Enter The Verification Code*

false

false