KILL ENERGIES

UV energy at 254nm has propagation to overcome this problem. Medixair™ applies unique design geometry to optimize the exposure of the air, under treatment, to the germicidal properties of the ultraviolet light. Medixair $^{\text{TM}}$ produces 22,500 μ W.s.cm 2 of energy; sufficient to eradicate all viruses and bacteria, including many in their

Virus	μ W.s.cm ²
Adenovirus 3	1,500
Bacteriophage (E.Coli virus	3,000
Coxsackie virus A9	12,000
Coxsackie virus B1	15,500
Echovirus 1	11,000
Echovirus 2	12,000
Hepatitis A	11,000
Infectious hepatitis virus	8,000
Influenza	3,400
Poliovirus 1	11,000
Poliovirus 2	12,000
Poliovirus 3	10,000
Reovirus 1	15,400
Rotavirus SA11	7,800

Bacteria	μ W.s.cm ²
Mycobacterium tuberculosis	6,200
Neisseria catarrhal	4,400
Phytomonas tendencies	4,400
Proteus vulgaris	3,000
Pseudonymous aerogenous	5,500
Pseudonymous fluorescence	7,600
Salmonella prettify	6,100
Salmonella typhimurium	8,000
Samonella typhosa	6,000
Sarcina lutea	19,700
Serratia marcesens	2,420
Shighella dysentery	4,200
Shigella paradysenterea	1,680
Shigella flexneri	1,700
Shigella sonnei	2,100
Spirllium rubsum	4,400
Staphylococcus aureus	1,840
Streptococcus harmolyticus (A) 2,600
Streptococcus haemolyticus (D	
Streptococcus latis	6,150
Streptococcus viridans	6,150
Streptococcus pyrogenes	2,160

Bacteria	μ W.s.cm ²
Agrobacterium tumefaciens	4,200
Bacillus anthracis	4,500
Bacillus aegaterium (Spore)	9,070
Bacillus aegaterium	3,750
Bacillus subtilis (Spore)	12,000
Bacillus subtilis	7,100
Bacillus paratyphsus	3,200
Bacillus enteritidis	4,000
Coryne bacterium diphteriae	3,750
Clostridium tetani	4,900
Clostridium botulinium	12000
Dysentery bacilli	2,200
Eberthella typhosa	2140
E.coli	5,400
Leptospira spp (Infectious Jaundice)	3,000
Leptospira pneumphila	2,040
Leptospira bozemanii	1,800
Leptospira bumoffii	3,000
Leptospira gormanii	2,500
Leptospira micdadei	1,500
Leptospira longbeachae	1,500
Listeria monocytogenes	3,400
Micrococcus candidus	6,050
Micrococcus sphaeroides	10,000

PRODUCT FEATURES:

SILENT OPERATIONS

COMPACT & PORTABLE

LOW OPERATING COSTS

CAN BE USED 24 X 7

UVA TECHNOLOGY THAT KILLS 99.9% OF AIRBORNE GERMS

Contact PCI today **2** 1800-212-212-5 www.pestcontrolindia.com

SMS: PEST to 54242



Medixair™ is a revolutionary new germicidal product for air sterilization based on UVC light. It sterilizes premises against airborne infections caused by viruses, bacteria and spores. This amazing unit is portable and capable of destroying greater than 99.999% of micro-organisms (bacteria and viruses) in the air. It complies with International Statutory Safety Regulations.

APPLICATION:

OPERATION	THEATRES.	BURN	UNITS
OI LIGATION	11112/1111125/	DOILIA	014110

NEO-NATAL WARDS

INTENSIVE CARE UNITS (ICUs)

POST-OPERATIVE/RECOVERY ROOMS

ORTHOPEDIC ROOMS/WARDS

ISOLATION ROOMS/WARDS,
MICROBIOLOGY/PATHOLOGY

LABS

CULTURE ROOMS

STERILIZATION DEPTS

MORTUARIES/MORGUES

WAITING & CONSULTING ROOMS

GENERAL WARDS (OPDs)

THE TECHNOLOGY

Medixair™ is a 110W air sterilization unit employing ultraviolet light. It is designed to decontaminate the air within critical hospital environments. The machine is portable and extremely quiet when running. The patented technology packages a high amount of UV energy securely and safely, into a single device that can be easily deployed within the patient environment. In addition to respiratory droplet secretions from pathogens, such as norovirus, airborne infection also embraces many "lighter than air" bacteria & viruses, MRSA and C.difficile spores, that are carried around hospital environments on minute dust particles. These organisms are widely dispersed by natural, everyday air currents before precipitating on to susceptible hosts or surfaces and equipment, they may be readily disturbed again. Intervening in the route of transmission will greatly improve environmental hygiene and significantly reduce the opportunity for infection.

**Optional Stand Available at an additional cost

METHOD OF USE

In operation Medixair™ cleans hospitals wards through the continuous decontamination of room air as it passes through the machine. Working at a rate of 25m3/hour, Medixair™ produces a stream of sterile air which dilutes environmental contamination, keeping equipment & surfaces cleaner. In this way, cross infection is reduced by lowering the risk of pathogens entering the body. Capable of generating fast results, Medixair™ will, unlike other decontamination methods, provide continuous complement to combat the return of contamination after deep cleaning. Installed as a single unit in a sideword or as multiple units in open bays, Medixair™ will have an immediate and positive impact in terms of reducing rate HCAI.

CLINICAL STUDIES

A controlled clinical trial against MRSA, was recently completed at Northwick Park, NHS trust in London. By intervening in the airborne cycle of transmission, Medixair™ successfully demonstrated positive and statistically significant result. A second study further demonstrated that airborne transmission also plays an important role in Clostridium difficile infection transmission. Following the placement of Medixair™ units within an orthopedic trauma ward, C.diff infection rates were reduced by 80%; a performance that was maintained for fifteen month period. Intervention in cycle of transmission using air sterilizations demonstrated statistically significant and positive results. Clostridium difficile - Aerobiology & nosocomial transmission: From July 2007, ten ultraviolet air sterilization units were placed in an orthopedic trauma ward; one in each side-room and one in each bay. During the study period the hospital was engaged in an active programme against CDI. The Hygiene programme for the trauma ward was not distinct in any way from practices in the rest of the hospital - apart from the installation of Medixair™ air sterilization units.

MRSA CONTROLLING AIRBORNE TRANSMISSION

Room Number+ Percentage Pf Positive

Swabs Over 13 Weeks

UV-ROOM

PATIENT 0%

ΡΔΤΙΕΝΤ 47%

	2006			2007				2008			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Acute Trauma Ward	6	6	4	0	8	12	4	1	1	0	0
All Hospital Ward	76	79	84	47	62	93	64	38	44	49	50

The data indicates that the hospital reduced the average number of CDI cases per six months from 146 (Jan 06 to Jun 07) to 98 (Jul 07 to Sep 08), a reduction of 33%. In the same time period, the trauma ward achieved an 80% reduction, from 12 cases per six months to 2.4 cases.